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Abstract

We derive an expression for the remainder in divided difference expansions and use it to give

new error bounds for numerical differentiation.
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1. Introduction

There are many applications in numerical analysis of divided difference
expansions of the form

½x0;y; xn� f ¼
Xp�1
k¼n

ck f ðkÞðxÞ=k!þ Rp: ð1:1Þ

Here, and throughout the paper, we will assume that x0px1p?pxn are arbitrarily
spaced real values and x is any real value in the interval ½x0; xn�:We refer the reader
to [1] for basic properties of divided differences. Two things are required: evaluation
of the coefficients ck; and a bound on the remainder term Rp in terms of the

maximum grid spacing

h :¼ max
0pipn�1

ðxiþ1 � xiÞ:
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We take as our canonical example the finite difference expansion

f ðx0Þ � 2f ðx1Þ þ f ðx2Þ
2h2

¼ f 00ðx1Þ
2!

þ h2
f ð4Þðx1Þ
4!

þ?þ hp�2 f ðpÞðxÞ
p!

; ð1:2Þ

in which n ¼ 2; x1 � x0 ¼ x2 � x1 ¼ h; x ¼ x1; p is even, and x is some number in
½x0; x2�: The choice p ¼ 4 implies

f ðx0Þ � 2f ðx1Þ þ f ðx2Þ
h2

� f 00ðx1Þ ¼
h2

12
f ð4ÞðxÞ; ð1:3Þ

which gives the well-known error formula for the approximation of the second
derivative of the function f by a second-order finite difference, which appears in
many books and is used in deriving standard finite difference schemes for second-

order boundary-value problems with Oðh2Þ accuracy; see, for example, [12] or [6].
The more general expansion (1.2) has been used to derive schemes with higher order
of approximation. Analogously, the most general expansion (1.1) plays a basic role
in deriving difference schemes for both higher-order equations and non-uniform
grids. Schemes for non-uniform grids have been developed and studied by Osborne
[8], Doedel [2], and Kreiss et al. [7].
The usual approach to finding the coefficients ck is to use the Taylor series

f ðyÞ ¼
Xp�1
k¼0

ðy � xÞk
f ðkÞðxÞ=k!þ rp; ð1:4Þ

for some remainder term rp: Applying the divided difference ½x0;y; xn�; gives

½x0;y; xn� f ¼
Xp�1
k¼n

½x0;y; xn�ð
 � xÞk
f ðkÞðxÞ=k!þ Rp:

This, then, provides the coefficients ck; which were already found by Steffensen (in
[11, Section 76]). He also observed that they can be expressed in the more explicit
form,

ck ¼ sk�nðx0 � x;y; xn � xÞ;

where sj is the symmetric polynomial of degree j;

sjðd0;y; dnÞ ¼
X

t0þ?þtn¼j

dt00 ?dtn

n : ð1:5Þ

The first examples of ck are therefore

cn ¼ 1; cnþ1 ¼
X
0pipn

ðxi � xÞ; cnþ2 ¼
X

0pipjpn

ðxi � xÞðxj � xÞ: ð1:6Þ

As regards a bound on the remainder term Rp; the following theorem is known in

many special cases. We will assume that the function f belongs to Cp½x0; xn� and we
denote by jj:jj the max norm over ½x0; xn�:
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Theorem 1. There exists a constant C; depending only on n and p; such that

jRpjpChp�njjf ðpÞjj: ð1:7Þ

Consider, for example, the special case in which the data points x0;y; xn are
uniformly spaced, i.e., such that xiþ1 � xi ¼ h (as in Eq. (1.2)), though xA½x0; xn� may
be arbitrary. Then the theorem is well known and easily established using the simple
derivative remainder term

rp ¼ ðy � xÞp
f ðpÞðxyÞ=p!;

in the Taylor expansion (1.4), where xy is some number between x and y: This is

because the application of the divided difference ½x0;y; xn� to (1.4) only involves
division by differences of the form xj � xi: In the uniform case, all such differences

are multiples of h; namely ðj � iÞh:
Also in the case p ¼ n þ 1; with x0;y; xn arbitrary, Theorem 1 is known, and was

proved by Isaacson and Keller [5]. Their proof uses the fact that the remainder Rnþ1
is the nth derivative of the error in interpolating f by a Lagrange (or Hermite)
polynomial of degree n at the points x0;y; xn (up to a factor of n!).
The question of whether the theorem holds in general seems less straightforward

however. One of the purposes of this paper is to give a simple proof of Theorem 1 in
full generality, by deriving a new formula for the remainder Rp: We further show

that when p � n is even, the remainder can be expressed in a form similar to that of
(1.2).

Theorem 2. When p � n is even, there exists xA½x0; xn� such that

Rp ¼ sp�nðx0 � x;y; xn � xÞf ðpÞðxÞ=p!:

We remark that Steffensen (in [11, Section 76]) proved that the remainder Rp has

this form for all p in the case that x lies outside the interval ðx0; xnÞ:
Finally, we study the important case p ¼ n þ 2; which occurs frequently in finite

difference schemes. The reason is that if x is chosen to be the average

%x ¼ x0 þ?þ xn

n þ 1 ; ð1:8Þ

then the coefficient cnþ1 in (1.6) is zero, so that

½x0;y; xn� f ¼ f ðnÞð %xÞ=n!þ Rnþ2:

Since Theorem 1 shows that jRnþ2jpCh2jjf ðnþ2Þjj; the divided difference ½x0;y; xn� f

offers a higher-order approximation to f ðnÞ=n! at the point %x: This enables finite

difference schemes on non-uniform grids to be designed with Oðh2Þ truncation error
and therefore Oðh2Þ convergence; see [2,7].
Due to Theorem 2, we prove a more precise result.
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Theorem 3. With %x as in (1.8),

jn!½x0;y; xn� f � f ðnÞð %xÞjp
n

24
h2jjf ðnþ2Þjj; ð1:9Þ

and if x0;y; xn are uniformly spaced, the constant n=24 is the least possible.

We complete the paper with some examples.

2. New remainder formula

Consider what happens if we use one of the more precise remainder terms in the
Taylor series (1.4). For example, if we use the divided difference remainder,

rp ¼ ðy � xÞp½y; x;y; x|fflfflfflffl{zfflfflfflffl}
p

� f ;

then, using the Leibniz rule, we get in (1.1) the remainder formula

Rp ¼ ½x0;y; xn�ð
 � xÞp½
; x;y; x|fflfflfflffl{zfflfflfflffl}
p

� f

¼
Xn

i¼0
½xi;y; xn�ð
 � xÞp½x0;y; xi; x;y; x|fflfflfflffl{zfflfflfflffl}

p

� f

¼
Xn

i¼0
sp�nþiðxi � x;y; xn � xÞ½x0;y; xi; x;y; x|fflfflfflffl{zfflfflfflffl}

p

� f : ð2:1Þ

However, this remainder formula is not useful for us because it involves divided
differences of f of all orders from p to p þ d; which in general will not be well defined
for fACp½x0; xn�:
The other well known remainder for the Taylor expansion (1.4) is the integral one,

rp ¼ 1

ðp � 1Þ!

Z y

x

ðy � sÞp�1
f ðpÞðsÞ ds:

Applying ½x0;y; xn� will give an expression for Rp; and by introducing truncated

powers, this can be reformulated in terms of a kernel. A kernel approach was used by
both Howell [4] and Shadrin [10] to give a more precise bound than Isaacson and
Keller [5] on Rnþ1: However, Theorem 1 can be established using purely elementary
properties of divided differences, and without kernels. In Section 5 we show that also
Howell and Shadrin’s bound on Rnþ1 follows from simple divided difference
properties.
In fact we abandon the Taylor series altogether and derive a new formula for Rp;

in terms of divided differences, in the spirit of the remainder formulas for Lagrange
interpolation derived independently by Dokken and Lyche [3] and Wang [13].
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Lemma 1. With di ¼ xi � x;

Rp ¼
Xn

i¼0
disp�n�1ðdi;y; dnÞ½x0;y; xi; x;y; x|fflfflfflffl{zfflfflfflffl}

p�i

� f : ð2:2Þ

This formula is better than (2.1) because it only involves divided differences of f of
the same order p: Note also that though the formula is not symmetric in the points
x0;y; xn; it holds for any permutation of them, an observation we take advantage of
when proving Theorem 2.

Proof. The case p ¼ n þ 1 is a special case of the remainder formula of Dokken and
Lyche [3] and Wang [13]. Dokken and Lyche argue that

½x0;y; xn� f ¼ ½x;y; x|fflfflfflffl{zfflfflfflffl}
nþ1

� f þ ð½x0;y; xn� f � ½x;y; x|fflfflfflffl{zfflfflfflffl}
nþ1

� f Þ

¼ f ðnÞðxÞ
n!

þ
Xn

i¼0
ð½x0;y; xi; x;y; x|fflfflfflffl{zfflfflfflffl}

n�i

� f � ½x0;y; xi�1; x;y; x|fflfflfflffl{zfflfflfflffl}
n�iþ1

� f Þ

¼ f ðnÞðxÞ
n!

þ
Xn

i¼0
ðxi � xÞ½x0;y; xi; x;y; x|fflfflfflffl{zfflfflfflffl}

n�iþ1

� f :

We prove (2.2) in general by induction on p: We assume (2.2) holds for p4n and
show that it also holds for p þ 1: Indeed, recalling Eq. (1.5),

Rp ¼
Xn

i¼0
ðsp�nðdi;y; dnÞ � sp�nðdiþ1;y; dnÞÞ½x0;y; xi; x;y; x|fflfflfflffl{zfflfflfflffl}

p�i

� f

¼ sp�nðd0;y; dnÞ
f ðpÞðxÞ

p!
þ
Xn

i¼0
sp�nðdi;y; dnÞ

� ð½x0;y;xi; x;y; x|fflfflfflffl{zfflfflfflffl}
p�i

� f � ½x0;y; xi�1; x;y; x|fflfflfflffl{zfflfflfflffl}
pþ1�i

� f Þ

¼ sp�nðd0;y; dnÞ
f ðpÞðxÞ

p!
þ Rpþ1: &

Interestingly, the above proof derives both the remainder Rp and the coefficients ck

of expansion (1.1), without using a Taylor series.

Proof of Theorem 1. This follows from Lemma 1 and the fact that jdijpnh: In fact
the constant C in (1.7) can be taken to be np�n=ðn!ðp � nÞ!Þ; because

jRpjp
Xn

i¼0
jdijsp�n�1ðjdij;y; jdnjÞjjf ðpÞjj=p!

¼ sp�nðjd0j;y; jdnjÞjjf ðpÞjj=p!

M.S. Floater / Journal of Approximation Theory 122 (2003) 1–9 5



p sp�nðnh;y; nhÞjjf ðpÞjj=p! ¼
p

n

 !
np�nhp�njjf ðpÞjj=p!: &

We turn next to Theorem 2 and begin with a basic property of the polynomials sj :

Lemma 2. If jX1 is odd, any set of real values d0;y; dn can be permuted so that the

n þ 1 products

d0sjðd0;y; dnÞ; d1sjðd1;y; dnÞ;y; dnsjðdnÞ; ð2:3Þ

are simultaneously non-negative.

Proof. We start with the first term and consider two possible cases. If
sjðd0;y; dnÞX0; then at least one of the di must be non-negative. Indeed, if all

the di were negative, then sjðd0;y; dnÞ would also be negative, due to j being odd in

(1.5). We can therefore permute d0;y; dn so that d0 is non-negative, which implies
that

d0sjðd0;y; dnÞX0: ð2:4Þ

Similarly, if sjðd0;y; dnÞp0; then at least one of the di must be non-positive, in

which case we choose d0 to be non-positive, so that inequality (2.4) holds again.
We continue in this way, next choosing d1 from the remaining values d1;y; dn to

ensure that the second term in (2.3) is non-negative, and so on. The last term is
trivially non-negative because

dnsjðdnÞ ¼ sjþ1ðdnÞ ¼ djþ1
n X0: &

Proof of Theorem 2. Since p � n � 1 is odd, Lemma 2 implies the existence of a
permutation of the points x0;y; xn such that the n þ 1 coefficients
disp�n�1ðdi;y; dnÞ in Eq. (2.2) are simultaneously non-negative. The result then
follows from the Mean Value Theorem and the observation that the coefficients sum
to sp�nðd0;y; dnÞ: &

Note that the above analysis implies that sjðd0;y; dnÞ is non-negative for any real
values d0;y; dn when j is even, but this is well known and follows from the fact that

sjðd0;y; dnÞ ¼ ðnþj
j
Þxj for some point x in the interval containing the di (see [11,

Eq. (41)]).

3. Optimal error bounds

We next consider Theorem 3. Like Theorem 2, it follows from an elementary
property of the symmetric polynomials sj in (1.5).
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Lemma 3. If d0 þ?þ dn ¼ 0; then

s2ðd0;y; dnÞ ¼
1

2ðn þ 1Þ
X

0piojpn

ðdj � diÞ2:

Proof. This follows from the two identitiesX
0pipjpn

ðdj � diÞ2 ¼ ðn þ 2Þ
Xn

i¼0
d2i � 2

X
0pipjpn

didj;

and

0 ¼
Xn

i¼0
di

 !2
¼ �

Xn

i¼0
d2i þ 2

X
0pipjpn

didj: &

Proof of Theorem 3. Putting x ¼ %x and p ¼ n þ 2 in expansion (1.1), Theorem 2
implies

½x0;y; xn� f ¼ f ðnÞð %xÞ=n!þ s2ðd0;y; dnÞf ðnþ2ÞðxÞ=ðn þ 2Þ!:
So Lemma 3 implies that

n!½x0;y; xn� f � f ðnÞð %xÞ ¼
1

2ðn þ 1Þ2ðn þ 2Þ

X
0piojpn

ðxj � xiÞ2f ðnþ2ÞðxÞ: ð3:1Þ

Inequality (1.9) now results from the observation thatX
0piojpn

ðxj � xiÞ2p
X

0piojpn

ðj � iÞ2h2 ¼ nðn þ 1Þ2ðn þ 2Þ
12

h2: ð3:2Þ

In the uniform case, xiþ1 � xi ¼ h; inequality (3.2) becomes an equality, so that
Eq. (3.1) reduces to

Dnf ðx0Þ
hn

� f ðnÞð %xÞ ¼
n

24
h2f ðnþ2ÞðxÞ; ð3:3Þ

where %x ¼ ðx0 þ xnÞ=2 and Dnf ðx0Þ denotes the nth order finite difference

Dnf ðx0Þ ¼
Xn

i¼0
ð�1Þn�i n

i

 !
f ðxiÞ:

So if we set f ðxÞ ¼ xnþ2; error bound (1.9) becomes an equality. &

4. Examples

Though Theorem 3 gives a simple error bound for non-uniformly spaced points,
better bounds can be derived for specific configurations of x0;y;xn by going back to
the exact Eq. (3.1). For example, in the simplest non-uniform case, namely n ¼ 2;
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Eq. (3.1) reduces to

2½x0; x1; x2� f � f 00ð %xÞ ¼
1

36
ðh20 þ h0h1 þ h21Þf ð4ÞðxÞ;

where h0 ¼ x1 � x0 and h1 ¼ x2 � x1: Various approaches have been used to show

that the approximation 2½x0; x1; x2� f to f 00ð %xÞ is of order Oðh2Þ; see, for example,
Samarskii et al. [9], but the above exact formula appears to be new. Taking for
example the Hermite case x2 ¼ x1; so that h ¼ h0 and h1 ¼ 0; then with %x ¼
ðx0 þ 2x1Þ=3; we get the optimal error bound

j2½x0; x1; x1� f � f 00ð %xÞjp
h2

36
jjf ð4Þjj:

Another example could be the case h ¼ h0 ¼ 2h1; giving the optimal bound

j2½x0; x1; x2� f � f 00ð %xÞjp
7

144
h2jjf ð4Þjj:

When the points x0;y; xn are uniformly spaced, error formula (3.3) is known for
n ¼ 1; 2; but appears to be new for nX3: The case n ¼ 2 reduces to Eq. (1.3). The
case n ¼ 3 gives a new error formula for a well-known approximation,

�f ðx0Þ þ 3f ðx1Þ � 3f ðx2Þ þ f ðx3Þ
h3

� f ð3Þð %xÞ ¼
h2

8
f ð5ÞðxÞ

with %x ¼ ðx1 þ x2Þ=2: The case n ¼ 4 gives the new error formula
f ðx0Þ � 4f ðx1Þ þ 6f ðx2Þ � 4f ðx3Þ þ f ðx4Þ

h4
� f ð4Þðx2Þ ¼

h2

6
f ð6ÞðxÞ:

5. Howell and Shadrin’s error bound

Shadrin [10] has shown that if pn denotes the polynomial of degree n interpolating
f at the points x0;y; xn; then for k ¼ 0; 1;y; n;

jpðkÞ
n ðxÞ � f ðkÞðxÞjpjjcðkÞ

n jj jjf
ðnþ1Þjj

ðn þ 1Þ! ;

where

cnðxÞ ¼ ðx � x0Þðx � x1Þ?ðx � xnÞ:

This bound was earlier conjectured by Howell [4] who also proved it for the highest
derivative k ¼ n: Both Howell and Shadrin used kernels and properties of B-splines
to establish the case k ¼ n: We now offer an elementary proof using the simple
remainder formula of Dokken, Lyche, and Wang,

pðnÞ
n ðxÞ � f ðnÞðxÞ ¼ n!

Xn

i¼0
ðxi � xÞ½x0;y; xi; x;y; x|fflfflfflffl{zfflfflfflffl}

n�iþ1

� f :
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Note that since
Pn

i¼0 jxi � xj is a convex function of x; its maximum value in the

interval ½x0; xn� is attained at one of the end points, where it agrees with jcðnÞðxÞj=n!:
Therefore,

jpðnÞ
n ðxÞ � f ðnÞðxÞjp n!

Xn

i¼0
jxi � xj jjf

ðnþ1Þjj
ðn þ 1Þ!

p n!max
Xn

i¼0
jxi � x0j;

Xn

i¼0
jxi � xnj

( )
jjf ðnþ1Þjj
ðn þ 1Þ!

¼maxfjcðnÞ
n ðx0Þj; jcðnÞ

n ðxnÞjg
jjf ðnþ1Þjj
ðn þ 1Þ!

p jjcðnÞ
n jj jjf

ðnþ1Þjj
ðn þ 1Þ! :
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